

Data collection Thomas Nemecek

Agroscope Reckenholz-Tänikon Research Station ART CH-8046 Zurich, Switzerland

http://www.agroscope.ch thomas.nemecek@agroscope.admin.ch

How to get representative LCI data? Two approaches

- Structural, general production and economic data are regularly recorded in most countries (statistics, FADN, FAO, EUROSTAT)
- Data on agricultural management are largely missing (fertiliser use, pesticides, use of machinery, timing of interventions, etc.)
- Two possible solutions:
 - 1. Make a large survey: pilot farm networks
 - → one single data source
 - → enables to assess the variability
 - → preferable, but very expensive!
- 2. Modelling LCI: based on statistics, FADN, recommendations, expert knowledge, etc.
 - → combination of several different data sources
 - → difficult to assess the variability
 - → most frequently used alternative, much cheaper

How to get representative LCI data? 1. Example of Swiss farm LCA network

Project Life Cycle Assessment – Farm Accountancy Data Network (LCA-FADN)

- Integrate environmental LCA into FADN
- Project supported by the Swiss Federal Office for Agriculture
- Time-frame: 2004 2010 with data acquisition from 2006 2008
- Establish an operating system with 110 farms (during 3 years with 60 in the first year)
- Establish an information technology infrastructure
- Training life cycle management principles in practice
- Develop concepts for evaluation and communication and practice them with farmers and extension services
- Sectoral monitoring and environmental management of farms

How to get representative LCI data?2. Example of modelling LCI

Data category	Data source(s)		
Yields for main products	FADN ART (weighted means for 1996-2003)		
Straw yields and crop residues	Fertilising recommendations (Walther et al. 2001)		
Moisture content Quantity of seed Use of machinery (number of passes)	Gross-margin catalogue from the extension service (LBL et al. 2000)		
Sowing and harvest dates	Work budget (planning tool, Näf 1996)		
Quantity of fertilisers	Fertilising recommendations (Walther et al. 2001)		
Types of fertilisers in integrated systems	Import statistics (years 1996-98 from Rossier 2000) for mineral fertilisers Pilot farm network (years 1994-96 from BLW <i>et al.</i> 1998) for farmyard manure		
Types of fertilisers in organic systems	Pilot farm network (years 1994-96 from BLW et al. 1998) for farmyard manure		
Pesticide applications	Pilot farm network (years 1994-96 from BLW et al. 1998)		
Chemical seed dressing	Information provided by seed suppliers and experts (survey)		

Cl data collection in agriculture Data categories (1)

- Yields
- Machinery and fuel
- Fertilisers:
 - Organic and mineral fertilisers
 - Taking into account crop rotation
 - Taking into account crop residues (nutrients received from previous crop, nutrients delivered to the following crop)
 - Fertiliser recommendations
 - Overfertilisation: what if the farmer does not follow the recommendation?
 - In case of lack of data: use nutrients withdrawal for P and K, total N uptake (including by-products and crop residues)

Accounting for nutrient transfer in crop residues (except N)

	Crop1	Crop2	Crop3	Crop4
Nutrient requirement	NR1	NR2	NR3	NR4
Nutrients in crop residues	CR1	CR2	CR3	CR4
Fertiliser rate applied by the farmer	FR1=NR1-CR4	FR2=NR2-CR1	FR3=NR3-CR2	FR4=NR4-CR3
Fertiliser rate used in the inventory	FR1=NR1-CR1	FR2=NR2-CR2	FR3=NR3-CR3	FR4=NR4-CR4

Cl data collection in agriculture Data categories (2)

- Pesticides: the active ingredients need to be known. The total amount of pesticides is insufficient → most statistics to not provide enough detail
- Irrigation: distinction of irrigated and rainfed crops might be necessary. Otherwise, the dataset should reflect a weighted average
- Seed: for many crops of lower importance (multiplication rate gives an indication of the importance)
- Drying: can be sometimes quite important.

Cl data collection in agriculture

- Be careful with experimental data. They might be too optimistic compared to current practice.
- Data should be representative for the actual situation and not for an optimal case.
- Deviations from the optimal case should also be included:
 - Crop failure
 - Necessity of resowing the crop
 - Deviations from good practice

Period for data collection

- Ideally, the practice of the last 3-5 years should be reflected.
- Yields:
 - Not less than 3 years, in order to smooth the annual variations
 - Not longer than 5 years, in order to exclude outdated statistics (technical progress)
 - The reference period of the yields is also set as the time period for the whole dataset
- Depending on the availability of reliable statistics
- Other data: ideally also for the same period, but not always possible
- For parameters that are less variable, data from one year are acceptable

Regionalised data collection

- Top-down approach:
 - Start with simple average inventory
 - Refine as needed
- Consider if other subdivision than regional would not be more appropriate (intensive/extensive, irrigated/rainfed, mechanised/manual)
- Caution with non-linearities and non-proportionalities → can cause bias