

SALCA Swiss Agricultural Life Cycle Assessment

Thomas Nemecek

Agroscope Reckenholz-Tänikon Research Station ART CH-8046 Zurich, Switzerland

http://www.agroscope.ch thomas.nemecek@agroscope.admin.ch

SALCA: An integrated concept for agricultural environmental assessment

SALCA = **S**wiss **A**gricultural **L**ife **C**ycle **A**ssessment

SALCA consists of the following elements:

- Database for life cycle inventories for agriculture (in collaboration with ecoinvent)
- Models for the calculation of direct emissions from field and farm
- A selection of impact assessment methods (midpoints)
- Methods for the assessment of impacts on biodiversity and soil quality
- Calculation tools for agricultural systems (farm, crop)
- Interpretation scheme for agricultural LCA
- Communication concept for the environmental management of farms

Principles of SALCA tools: Organisational structure

- Generic LCA systems to cover all types of farms (SALCAfarm) or crops (SALCAcrop) within the validity range
 - → wide range of applications
 - → applicable for multiple purposes
- Standardised LCA calculation
 - → ensures consistency
 - → avoids redundancy
- Parameterisation
 - → inputs and processes defined by variables
 - → non-existing inputs and processes set to 0
 - → hundreds to thousands of parameters
- Modular structure
 - → each module has clearly defined interfaces
 - → modules can also be used/tested independently
 - → complexity can be managed
- Illustrated by the example of SALCAcrop

Levels of analysis of SALCA tools

- Crop (arable crops, permanent crops, grassland): one crop one cropping season
- Cropping system (crop rotation): several crops, several years
- Farm (includes also animals and feedstuffs, can have many fields and many crops): one calendar year (crop cycle for arable crops)

SALCAcrop

SALCAfarm

SALCAcrop

- System boundary: 1 crop per growing season
 - By multiple calculations it can represent also crop rotations and permanent crops
- 140 arable/permanent crops and vegetables covered
- Valid for Central Europe

Modular architecture of the SALCA-crop V3.1

Agroscope

Principles of SALCA tools: Software implementation

- Automated workflow
 - → efficient calculation procedure
- Batch processing
 - → mass calculation
 - → many farms or crops can be calculated in one run
- Core components (SALCAcrop, SALCAfarm)
 - → own programming
- Peripheral components
 - → IT service provider, parametrisable tools
- Illustrated by the example of SALCAfarm

SALCAfarm

- System boundary: farm / product group
 - Can also be used for animal production systems
- Applicable for Swiss conditions
- Four system levels:
 - Farm
 - Product group (up to 14 product groups)
 - Field
 - Crop
- Allocation of inputs and outputs to the product groups by a set of allocation rules (economic, area, arable area, livestock units)

SALCAfarm: Iterative calculation procedure at several levels

	Calculation level		
Module	Crop	Field	Farm / product group
SALCAerosion	U	0	
SALCAnitrate	U	U	
SALCAfield	U	U	
SALCAheavyMetals			ð
SALCAanimal			ð

Automated workflow as used in LCA-FADN

Agroscope

Embedding into existing IT infrastructure Workflow in the project LCA-FADN

Conclusions

Advantages of generic LCA tools

- Consistent, standardised calculation of a large number of LCAs
- More efficient calculation → allows to assess variability better
- Avoids redundancy -> changes and improvements made only once
- Flexibility by parameterisation

Drawbacks of generic LCA tools

- Time-consuming development
- System gets more complex (need to consider all cases) → modular structure required

Generic LCA tools are required

- to handle large datasets
- to assess variability
- to foster agricultural LCA

Outlook

- SALCAfuture (IT project)
 - Fundamental revision of the SALCA tools
 - Easier, faster, more user friendly data collection
 - Better analysis tools, scientific support
 - Import options for various data sources
 - Easier maintenance