

A joint initiative of the ETH domain and Swiss Federal Offices

C ART

2nd International ecoinvent Meeting Lausanne, March 14, 2008

ecoinvent data v2.0 Metals (for ICT): Introduction

Hans-Joerg Althaus, Empa

Session overview

- Introduction
 Hans-Joerg Althaus, Empa
- Modelling Principles and Results
 Mischa Classen, Empa
- Gold and Silver
 Sybille Büsser, ESU-services (→ see separate file!)
- Discussion

3

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Hans-Joerg Althaus

Metals in ecoinvent data v2.0

- 204 Datasets, 110 new ones
- 92 "end-user" Datasets, 32 new ones
- Existing Datasets partly updated and refined
 - → some relevant changes in LCIA results

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Metals in ecoinvent data v2.0

- New data mainly for metals used for ICT
- Most metals produced from coupled resources
 - → complex modelling necessary
- Many metals produced from very low concentrated ores
 - → relevant influence of allocation procedure

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Hans-Joerg Althaus

A joint initiative of the ETH domain and Swiss Federal Offices

5

2nd International ecoinvent Meeting Lausanne, March 14, 2008

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

metals:

Modelling Principles and Results

Mischa Classen, Empa Dübendorf

Presentation: Mischa Classen

Overview

7

- Objectives and approach for v2.0
- Implementation of LCI-extension
 - Accounting for resource use
 - Co-product allocation
 - Correction for mass balance
- Conclusions
- Overview of valuation results
- Changes of selected indicators with v2.0

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

PEMPA

Metals in ICT

- econvent
- Metals play a vital role in consumer products
- Ever more complex materials in increasing pace developed
- Small amounts of expensive materials used
- Challenge of covering the most relevant metals with LCI

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Mischa Classen

Metals in ICT - Uses

- Metals are used in EEE as
 - Bonds and Contacts

Silver Gold Copper Platinum Group Metals

- Semiconductors

Silicium Cadmium Telluride (CdTe) Gallium Arsenide (GaAs)

Indium Tin Oxide (ITO)

- Conductive Layers

Capacitors Tantalum Powder

eco nvent

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

GEMPA

10

9

Metals in ICT - Sources

econvent

Sources of the identified new metals

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

11 Presentation: Mischa Classen

Metals in ICT - Web of Metals□

eco nvent Centre

- Orebodies contain charactersitic mix of metals
- Apart from mainprocucts:
 - Co-products
 - By-products
 - Inpurities
- Guidance for LCI modelling:
 - Which coproducts?
 - Nature of allocation

Wheel of metals (Reuter, JOM 2004)

Modelling Approach I

Gallium: Co-Product of Aluminium

extraction

Low economic interest for Alu industry, price determined by purification

- Allocation of upstream burden based on economic criteria → <u>"zero-allocation"</u>
- Allocation of resource based on physical criteria

Treat Resource like Technosphere process

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Aluminium Inventory not affected

13

14

Presentation: Mischa Classen

Modelling Approach II

Tellurium: Co-Product of Copper-extraction,

jointly with Silver

Some economic interest for Copper industry (namely Silver)

- Allocation of upstream burden based on economic criteria → Proceeds of the final commodities Tellurium and Silver
- Allocation of resource based on mass

Approximate upstream processes with existing LCI

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Modelling Approach II

eco nvent Centre

Aproximate upstream processes with existing LCI

1.002 kg 1 kg Coupled resources "Clone" Refining Cathode Cu, Mo, Ag, Te of Cu Copper Copper 1.63 g**Anode Slime** Copper Inventory not affected Creation of a "Clone" copper dataset. **Tellurium Silver**

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

C ART

15 Presentation: Mischa Classen

Modelling Approach III

Silver, Indium and Cadmium

Pb/Zn = important Source

<u>Full extension</u> of existing LCIs

Adapt elementary flow

Silver

- Co-product ratio

- Allocation

 Mass balance correction

Swiss Centre For Life Cycle Inventories

eco nvent

A joint initiative of the ETH domain and Swiss Federal Offices

Designation of Resource flow

Silver, 0.007% in sulfide, Pb 3.0%, Zn 5.3%, Aq 0.004%, Cd 0.18 %, In 0.003 %, in crude ore, in ground

- But: no distinguishable ore type for co-product metals

Swiss Centre For Life Cycle Inventories

Based on ore concentrations,

A joint initiative of the ETH domain and Swiss Federal Offices

ETH

Harmonised with LCI model

- Production ratio of carrier metal and co-product

- Extraction yield

🕽 art

- Processing yields
- Concentrations have to rely on back-calculations
 - global production of carrier metal (e.g. Lead) and
 - co-product metal (e.g. Silver)

Presentation: Mischa Classen

Production Ratio of Co-product

eco nvent

Scaled to world wide production, eq. Silver from Lead cycle

For Life Cycle Inventories

Swiss Centre

50'000 21% Ag from secondary

- A joint initiative of the
- 31 % Ag from lead

 \rightarrow 24% of 20'000 tpa Aq

→ 0.142% of Pb production

Per kg Lead

- ... 1.42 g refined Silver, or
- ... 8.1 g Parkes Crust @ 18% Ag
- ... 1.86 kg ore concentrate @ 0.08% Ag
- ... 21.5 kg minerals in ore @ 0.007% Ag
- ... 36.2 kg crude ore @ 0.0043% Ag

Presentation: Mischa Classen

17

Production Ratio of Co-product

eco nvent Centre

Top down vs. bottom up, eg. Indium from Zinc cycle

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Discrepancy:

refined.

Avg. grade: 50 ppm

Back-calculated: 19 ppm

ETH

50ppm would mean over the double global output than actually reported **⊘EMPA**C ART

Assumption: not all of the In in the extracted ore is

 40% of the In-values are dumped with the gangue.

Presentation: Mischa Classen

19

Allocation procedure

Schwarz-Schampera & Herzig (2002)

- By revenue
 - Cd considered inpurity: zero-allocation
 - Split refined commodity vs. Intermediate

• e.g. Silver from Lead refining

Presentation: Mischa Classen

🌼 EMP

20

Allocation procedure

eco nvent

270 \$ / kg

margin

Refining costs

- Reasoning
 - Intermediate (Parkes Crust) "for free"
 - Targeted profit at company level: 10%
- What would be the max. price for external purchase?
 - = opportunity cost
- → Same as margin,

21

22

→ 10 % of proceeds by refined commodities, disregarding subsequent possible process losses

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

🕽 art

Presentation: Mischa Classen

Allocation procedure

- All metal values in intermediate accounted for
- Total process yield considered

Lead / Silver bearing concen- trate	Process Yield	lead con- centrate	parkes process crust	lead	Value in \$ / kg
composition		input	output	output	
Pb	98.0%	55%	39%	100%	1.15
Ag	97.4%	0.08%	18%	0%	27
Amount	kg	1.86	0.0081	1	
Value contained in \$	\$		0.04	1.15	
Allocation by Value			3%	97%	

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Correct Mass Balance of Resource

- Hybrid allocation scheme:
 - Economic for process-emissions and upstream
 - Physical where mass balance required (resource)

correction from economic to per mass		according to economic allocation				
Resources demand in the feed			Lead		Parkes process crust	
Concentrate	kg	1.86	97%		3%	
Pb	kg	1.074	1.039		0.0354	
Ag	kg	0.00157	0.0 <mark>0152</mark>		0.000052	
Resources attributed in by-product			according to per mass allocation			
Pb			1.074			
Ag			C	0.00157		
Resource exchange flow		difference to be corrected				
Pb		0.03536		-0.03536		
Ag			-0.001515		0.001515	

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

23 Presentation: Mischa Classen

Correct Mass Balance of Resource

Representation in ecoinvent

1101'U (.oav neatring systems							
	hard coal, burned in industrial furnace 1-10MW	RER	0	6.9718	WJ	lognormal	1.2515	
oil/heating systems								
± 1589	heavy fuel oil, burned in industrial furnace 1MW, non-modulating	RER	0	0.28422	WI	lognormal	1.2515	
metals/extraction								
± 1100	iron ore, 65% Fe, at beneficiation	GLO	0	0.063572	kg	lognormal	1.2515	
± 1104	lead concentrate, at beneficiation	GLO	0	1.8553	kg	lognormal	1.3297	
± 10965	resource correction, PbZn, silver, positive	GLO	0	0.001515	kg	lognormal	1	
± 10966	resource correction, PbZn, silver, negative	GLO	0	0.001515	kg	lognormal	1	
± 10967	resource correction, PbZn, lead, positive	GLO	0	0.03536	kg	lognormal	1	
± 10968	resource correction, PbZn, lead, negative	GLO	0	0.03536	kg	lognormal	1	
construction materials/others								
± 529	limestone, milled, packed, at plant	СН	0	0.66875	kg	lognormal	1.2515	
natural gas/heating systems								
±	natural gas, burned in industrial furnace	RER	0	0.57721	MJ	lognormal	1.2515	

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Conclusion & Outlook

- econvent
- Coupled metal resources: integrated LCI model needed
 - Interconnection of primary, by-product and secondary production!
 - Many choices for allocation and system-model
 → together with stakeholder?
 - Aim: Harmonisation within whole metal sector

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Mischa Classen

Results - Overview

25

26

Indicator results range over five orders of magnitude

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Results - Light and ferrous Metals

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Mischa Classen

Results - Precious and speciality M.

27

28

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Results - Base Metals

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

29 Presentation: Mischa Classen

Changes with v2.0

Swiss Centre For Life Cycle Inventories

eco nvent

A joint initiative of the ETH domain and Swiss Federal Offices

Changes with v2.0

- Due to
 - Changes in background data
 - Correction of errors
- Generally IPCC higher (5-10 %)
- Specifically

31

- SXEW Copper plus 10-30%: changed background data?
- Lead minus 30-80%: introduction of secondary metal
- EAF steel: minus 15-25%
- BOF steel:
 - minus 25% Tox (UBP, eco-indicator),
 - plus 20% energy related (IPCC, CED)

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Mischa Classen

A joint initiative of the ETH domain and Swiss Federal Offices

