

A joint initiative of the ETH domain and Swiss Federal Offices

2nd International ecoinvent Meeting Lausanne, March 14, 2008

ecoinvent data v2.0 Energy Supply

A joint initiative of the ETH domain and Swiss Federal Offices

Christian Bauer, Paul Scherrer Institut (http://gabe.web.psi.ch/)
Niels Jungbluth, ESU-services Ltd. (www.esu-services.ch)
Rolf Frischknecht, ESU-services Ltd.

New ecoinvent data v2.0

- US electricity sector:
 - coal, natural gas & nuclear chains + PV mix
 - → electricity mix
- Chinese electricity sector:
 - coal & nuclear chains + PV mix
 - → electricity mix
- Emerging small scale combined heat and power systems (CHP)
 (Alex Primas, Basler & Hofmann)
- Photovoltaics (Niels Jungbluth)
- Bioenergy systems (parallel session)
- Electricity mixes (Rolf Frischknecht):

New: BR & JP, EU-27

Updated: European countries

(incl. emissions of coal power plants in PL, CZ, SK, HU)

Presentation: Christian Bauer

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Small CHP: system boundaries

Inventories include micro gas turbines, fuel cells (PEM and SOFC) and Stirling engines

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Christian Bauer

Natural gas, burned in micro gas turbine 100kWe

Assessment method

5

Assessment method

6

 Natural Gas fuel and CO₂-Emissions from operation are the main impact.

Presentation: Christian Bauer

eco nvent

Natural gas, burned in PEM fuel cell 2kWe, future

 Infrastructure of fuel cell of importance for impact on ecosystem quality.

Wood pellets, burned in stirling cogen unit 3kWe, future

 NOx and Particulate emissions from operation are of importance for total impact.

PAUL SCHERRER INSTITUT

Presentation: Christian Bauer

Small CHP: technical characteristics

Fuel	CHP-System	el. power	el. efficiency	th. efficiency
Natural gas, biogas	Cogen 160kWe lambda=1	160 kW _{el}	η _{el} = 32%	η_{th} = 55%
Natural gas, biogas	Micro gas turbine	100 kW _{el}	η _{el} = 29%	η_{th} = 46%
Natural gas, biogas	SOFC-GT fuel cell	180 kW _{el}	η _{el} = 58%	η_{th} = 22%
Natural gas, biogas	SOFC fuel cell	125 kW _{el}	η _{el} = 47%	η_{th} = 33%
Natural gas	Mini-BHKW	5 kW _{el}	η _{el} = 25%	η_{th} = 65%
Natural gas, biogas	PEM fuel cell	2 kW _{el}	η _{el} = 32%	η_{th} = 55%
Wood pellets	Stirling motor	3 kW _{el}	η _{el} = 23%	η_{th} = 67%

Presentation: Christian Bauer

High electric & total efficiency leads to a low impact

PAUL SCHERRER INSTITUT
Presentation: Christian Bauer

US electricity sector

- US specific modelling for 3 energy chains:
 - hard coal
 - natural gas
 - nuclear
- Main data sources used:
 - US National Renewable Energy Laboratory LCI database
 - Emissions & Generation Resource Integrated Database
 - Nuclear Regulatory Commission, US DOE
 - ecoinvent background data

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Christian Bauer

eco nvent

US electricity mix (2004)

Modeling of US electricity mix (2004)

Name		Unit	electricity, production mix US	electricity, supply mix US (incl. imports)	
Location			US	US	
Unit			kWh	kWh	
electricity, hard coal, at power plant	US	kWh	47.41%	47.05%	
electricity, nuclear, at power plant	US	kWh	19.68%	19.64%	
electricity, natural gas, at power plant	US	kWh	17.42%	17.32%	
electricity, hydropower, at pumped storage power plant	US	kWh	0.88%	0.87%	
electricity, production mix photovoltaic, at plant	US	kWh	0.01%	0.01%	
electricity, hydropower, at power plant	SE	kWh	6.86%	7.28%	
electricity, oil, at power plant	UCTE	kWh	3.31%	3.32%	
electricity, lignite, at power plant	UCTE	kWh	2.26%	2.34%	
electricity, at cogen 6400kWth, wood, allocation exergy	CH	kWh	0.96%	0.96%	
electricity, at wind power plant	RER	kWh	0.35%	0.35%	
electricity, at cogen with biogas engine, allocation exergy	CH	kWh	0.16%	0.16%	
electricity, industrial gas, at power plant	UCTE	kWh	0.10%	0.10%	

JS specific modeling for ~ 85% of electricity production

European LCA data used for ~ 15% of electricity production

→ small impact on cumulative LCA results

13 Presentation: Christian Bauer

eco nvent

Swiss Centre

For Life Cycle Inventories

A joint initiative of the

ETH

🕽 ART

Model of the US hard coal chain

^{*} specifically modeled for eight US councils following North American Electric Reliability Corporation (NERC)

PAUL SCHERRER INSTITUT

Model of the US natural gas chain

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

🕽 art

Power plant (US avg.):

- $-\eta = 0.34$
- US specific emissions

Presentation: Christian Bauer

16

* specifically modeled for eight US councils following North American Electric Reliability Corporation (NERC)

15 Presentation: Christian Bauer

PAUL SCHERRER INSTITUT

Regions considered for modeling of eco nvent US coal and gas chains **Swiss Centre** For Life Cycle Inventories A joint initiative of the ETH domain and Swiss Federal Offices ETH MRO 🕽 art WECC ERCOT=Electric Reliability Council of Texas; FRCC=Florida Reliability Coordinating Council; MRO=Midwest Reliability Organization; SERC NPCC=Northeast Power Coordinating Council; RFC=Reliability First Corporation; SERC=SERC **ERCOT** Reliability Corporation; SPP=Southwest Power FRCC Pool; WECC=Western Electricity Coordinating Council

Key characteristics of US hard coal electricity prouction

Swiss Centre For Life Cycle Inventories

		US total	ERCOT	FRCC	MRO	NPCC	RFC	SERC	SPP	WECC
installed net										
capacity	GW _{el}	346.5	8.9	10.5	22.6	8.1	130.9	112.5	22.1	31.4
fuel input	MJ	2.04E+13	6.06E+11	5.81E+11	1.63E+12	4.49E+11	6.90E+12	6.46E+12	1.49E+12	2.37E+12
total net										
generation	kWh	1.81E+12	5.19E+10	6.06E+10	1.18E+11	4.03E+10	6.38E+11	5.86E+11	1.10E+11	2.05E+11
average net										
efficiency	%	31.8%	30.8%	37.5%	26.0%	32.3%	33.2%	32.7%	26.6%	31.1%
NO _x	kg/kWh	1.85E-03	7.44E-04	2.03E-03	2.71E-03	1.33E-03	1.84E-03	1.64E-03	2.30E-03	2.10E-03
SO ₂	kg/kWh	5.17E-03	2.73E-03	2.90E-03	3.99E-03	5.71E-03	6.81E-03	5.48E-03	3.78E-03	1.70E-03
CO ₂	kg/kWh	1.09E+00	1.13E+00	9.24E-01	1.34E+00	1.06E+00	1.05E+00	1.07E+00	1.31E+00	1.12E+00
Hg	kg/kWh	2.49E-08	2.86E-08	9.55E-09	2.49E-08	1.74E-08	3.16E-08	2.28E-08	2.06E-08	1.70E-08

PAUL SCHERRER INSTITUT

Presentation: Christian Bauer

Model of the US nuclear chain

18

Origin of uranium for US reactors

	2003	2004	2005	2006	average	shares
Australia	9326	11660	9957	17052	11999	19%
Brazil	0	0	0	822	206	0%
Canada	17050	16468	22881	13325	17431	28%
Kazakhstan	4232	4211	1639	1628	2928	5%
Namibia	1034	2780	2963	3009	2447	4%
Russia	7689	10329	12959	15116	11523	18%
South Africa	1438	2091	573	725	1207	2%
Uzbekistan	3725	2303	2505	2020	2638	4%
Other (not specified)	1858	1918	1265	2035	1769	3%
Total Foreign	46352	51760	54742	55732	52147	82%
United States	10200	12342	11007	10807	11089	18%
Total Purchases	56552	64102	65749	66539	63236	100%

PAUL SCHERRER INSTITUT

Presentation: Christian Bauer

Origin of U enrichment services

Deliveries in Thousand Separative Work Units (SWU)	2003	2004	2005	2006	average
Country of Enrichment Service (SWU-origin)					
China	W	W	W	W	
France	2685	2325	1831	2154	
Germany	660	851	583	818	
Netherlands	542	402	581	960	
Russia	4224	4563	5059	4724	
United Kingdom	1586	1379	1379	2001	
Europe ^a	W	W	W	W	
Other ^b	0	0	W	W	
Foreign Total	10328	10411	10343	11808	
United States	1665	1374	1052	1630	
Total	11993	11785	11394	13437	
Share Foreign to Total	86%	88%	91%	88%	88%

Presentation: Christian Bauer

Origin of U enrichment services

Presentation: Christian Bauer

Shares of enrichment technologies for US reactors

		T
Technology	Supplier	Fraction
Centrifuge	CNNC	0.074
	Tenex	0.382
	Urenco	0.242
Diffusion	Eurodif	0.185
	USEC	0.118

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Christian Bauer

Characteristics of US reactors

Parameter	BWR	PWR	
Units in operation		35	69
Installed capacity	MW _e	33201	68789
Net electricity generation of nuclear origin in 2006	kWh	2.64E+11	5.23E+11
Share to total electricity of nuclear origin in 2006	%	33.5	66.5
Average load factor 2004-2006	%	91.6	90.9
Average lifetime load factor to end of September 2006	%	72.8	77.8
Average lifetime load factor assumed in ecoinvent	%	80	85
Lifetime assumed in ecoinvent	а	40	40
Lifetime net electricity generated assumed in ecoinvent	kWh	2.80E+11	2.98E+11

Swiss Centre For Life Cycle Inventories

eco nvent

A joint initiative of the ETH domain and Swiss Federal Offices

eco nvent

Presentation: Christian Bauer

GHG emissions, US electricity mix

Chinese electricity sector

- China specific modelling for 2 energy chains:
 - hard coal
 - nuclear

25

- Main data sources used:
 - China Energy Technology Program (CETP): reflects situation at end of the 1990's
 - ecoinvent background data

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

PAUL SCHERRER INSTITUT

Modelling of CN electricity mix

Name	Location	Intrastru	Unit	electricity mix
Location InfrastructureProcess Unit				CN 0 kWh
electricity, hard coal, at power plant	CN	0	kWh	0.7863
electricity, nuclear, at power plant	CN	0	kWh	0.0213
electricity, hydropower, at power plant	FI	0	kWh	0.1589
electricity, oil, at power plant	CZ	0	kWh	0.0287
electricity, natural gas, at power plant	CENTREL	0	kWh	0.0032
electricity, at cogen ORC 1400kWth, wood, allocation exergy	СН	0	kWh	0.0010
electricity, at wind power plant 600kW	СН	0	kWh	0.0006

Swiss Centre For Life Cycle Inventories

eco nvent

A joint initiative of the ETH domain and Swiss Federal Offices

specific modeling for ~ 81% of electricity production

European LCA data used for ~ 19% of electricity production

→ small impact on cumulative LCA results

Presentation: Christian Bauer

Model of the Chinese coal chain

burned in coal

mine power plant

Swiss Centre For Life Cycle Inventories

eco nvent

A joint initiative of the ETH domain and Swiss Federal Offices

- specific electricity supply, n=0.13
- emissions due to coal fires
- specific Rn-222 emissions

PAUL SCHERRER INSTITUT

Nuclear chain in China

- eco nvent Centre
- Mostly based on the Swiss nuclear LCA model
- Centrifuge enrichment only (diffusion for military), based on Russian technology (CN electricity)
- No reprocessing
- PWR only

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

PA

Presentation: Christian Bauer

PAUL SCHERRER INSTITUT

eco nvent

Swiss Centre

For Life Cycle

ETH domain and Swiss Federal Offices

ETH

🕽 art

Inventories

A joint initiative of the

29

GHG emissions, US (CN) hard coal & natural gas in comparison

Je gernand France GB Hald Spain

Natural Gas

Conclusions

- Current modelling of US & CN electricity production covers the most important technologies (as contributors to cumulative environmental impacts)
 - $\ensuremath{\rightarrow}$ allows better LCA modelling in these countries
- Performance of avg. fossil US & CN power plants is relatively poor, compared to European averages
 → high GHG emissions of electricity mix
- Due to currently high installation rate of coal power plants in CN, modelling will have to be reworked in a few years.

Swiss Centre For Life Cycle Inventories

eco nvent

A joint initiative of the ETH domain and Swiss Federal Offices

