

A joint initiative of the ETH domain and Swiss Federal Offices

2nd International ecoinvent Meeting Lausanne, March 14, 2008

A joint initiative of the ETH domain and Swiss Federal Offices

Gregor Wernet, Jürgen Sutter, ecoinvent Centre

New ecoinvent data v2.0

- Two projects:
 - petrochemical solvents
 - highly pure chemicals
- Detailed information on project goals, contents, dataset quality
- Examples of data generation

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

3

Petrochemical Solvents

- Annual solvent consumption in Europe alone was 4 million tonnes in 2004
- Roughly 250 to 300 solvents are generally available to chemists, but not all are used on a large scale
- Uses in
 - paint and coatings industry
 - chemical industry (production of pharmaceuticals, agrochemicals, specialty chemicals)
 - metal cleaning and degreasing
 - rubber and plastics manufacture
 - detergents and personal care products

Swiss Centre For Life Cycle Inventories

Petrochemical Solvents

eco nvent

Project size was limited to 50 chemicals

aliphatic and aromatic hydrocarbons, ethers, ...)

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

ETH

🕽 art

Important representative chemicals of all groups were selected based on production data, technical literature and a survey of the Swiss chemical industry

Solvents were classified into various chemical groups (alcohols,

5

List of the 50 solvents

Aliphatic Hydrocarbons

- Pentane
- Hexane
- Isohexane
- Heptane

Alicyclic Hydrocarbons

- Cyclohexane
- Methyl cyclohexane

Aromatic Hydrocarbons

- Ethyl benzene
- Toluene
- Xylene

Chlorinated Hydrocarbons

- Chlorobenzene
- Methylene chloride

Aldehydes

- Benzaldehyde
- Formaldehyde
- Propionaldehyde

Alcohols

- Benzyl alcohol
- 1-Butanol
- 2-Butanol
- Isobutanol
- Butylene glycol
- Ethanol
- Methanol
- Pentanol
- 2-Methyl-2-butanol Isoamyl alcohol
- 1-Propanol
- Isopropanol

Acids

- Formic acid
- Acetic acid

Ketones

- Acetone
- Cyclohexanone
- Methyl ethyl ketone
- Methyl isobutyl ketone

Esters

- Methyl formiate
- Butyl acetate
- Ethyl acetate
- Isobutyl acetate
- Isopropyl acetate Isoamyl acetate
- Methyl acetate

Ethers and glycolethers

- Diethyl ether
- Ethylene glycol dimethyl ether
- Ethylene glycol monoethyl ether
- Ethylene glycol diethyl ether
- Methyl-tert-butyl ether
- Tetrahydrofuran

Amides and other N-compounds

- Acetonitrile
- N,N-Dimethylformamide

Other solvents

- Dimethylsulfoxide
- Acetic anhydride
- N-Methyl-2-pyrrolidone

Swiss Centre For Life Cycle Inventories

Solvent Production Routes

- econvent
- Most solvents are created in one of four chemical routes:
 - Methanol route: methanol production from natural gas
 - Naphta/steam cracking route: Naphta from crude oil is treated in a steam cracking process
 - BTX/Naphta separation route: Naphta from crude oil or BTX reformate is separated in a molecular sieve
 - BTX splitting route: BTX reformate or pyrolisis gasoline are separated.

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

7

Solvent Production Routes

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Natural gas and crude oil processing

The Methanol route

Sulphurisation

Dehydration

Natural gas

Synthesis gas

Methanol

Dimethyl amine

Dimethyl sulfide

Dimethyl ether

Methyl chloride

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Carbonylation

Oxidation

Dehydration

Ethylene oxide

Acetylene

Dehydration

9

The Methanol route: CED

Energy profile per kg product (Cumulative Energy Demand)

Swiss Centre For Life Cycle Inventories

2 process steps

Esterefication

The Naphta/steam cracking route

1 process step

4 process

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

starting

materia

The BTX/ Naphta separation route

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

C: The BTX/naphtha separating route

13

econvent

The BTX splitting route

The BTX splitting route

Energy profile per kg product (Cumulative Energy Demand)

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

200 Starting material 1 process step 2 process steps 3 process steps 150 4 process steps Methyl isobutyl ketone Benzyaldehyde Cyclohexanone Methyl cyclohexane Benzyl alcohol Ethyl benzene Cumene Cyclohexane Benzyl chloride Toluene Xylene Benzene Benzal chloride Monochlorobenzene 50

15

New Inventories in ecoinvent 2.0

50 solvents were selected for relevance

- Swiss Centre For Life Cycle Inventories
- LCI data for 11 of these solvents had already been published in ecoinvent 1.1

A joint initiative of the ETH domain and Swiss Federal Offices

ETH

-FED-

- 😲 art

- LCI data for 3 solvents existed in ecoinvent 1.1 but were replaced by new inventories during the project
- New LCI data were created for 36 solvents

Data Sources

Whenever possible, actual production data was used to determine inventory flows

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Basic information was gathered from technical reference books

Necessary estimations were made based on *Hischier et al 2004* (Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability)

17

Data quality

Swiss Centre For Life Cycle Inventories

Data for raw materials and energy available: 13 solvents

A joint initiative of the ETH domain and Swiss Federal Offices

Energy approximated with similar process: 8 solvents

🚺 ART

All data estimated: 7 solvents

Example: Chlorobenzene

- Multi-output process: benzene chlorination
- Benzene + Chlorine → Monochlorobenzene + o-Dichlorobenzene + p-Dichlorobenzene
- Data available from US database (Overcash 1998-2001)
- Production data from US chemical industry
- Data available for use of raw materials, auxilliaries, and energy
- Data available for emissions to air and emissions to water
- Data available for yield of co-products \rightarrow allocation

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

19

Example: Acetates

- Ethanol + acetic acid → ethyl acetate

energy consumption: steam 8.84 MJ/kg, electricity 0.00725 kWh/kg

These data are used as approximation for energy consumptions of other esterifications:

- Butyl acetate (1-Butanol + Acetic acid)

- Isoamyl acetate (Isoamyl alcohol + Acetic acid)

Isobutyl acetate (Isobutanol + Acetic acid)

Isopropyl acetate (Isopropanol + Acetic acid)

Swiss Centre For Life Cycle Inventories

Highly Pure Chemicals

 Part of the ecoinvent 2.0 project Life cycle Inventories of electric and electronic equipment

IT-services report 18_IV

Devices report 18_III

Modules report 18_II

Components report 18_I

Disposal report 18_V

Raw materials report 10 (metals)

• Auxilliaries report 19 (chemicals for IT)

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

21

Chemicals for IT

EMPA St. Gallen: list of 77 chemicals for IT

- Batteries: 7 chemicals

- Hard disc drive: 1 chemical

- Semiconductors: 16 chemicals

- Printed wiring board: 26 chemicals

- Other components: 13 chemicals

- Others: 4 chemicals

- Preliminary products: 10 chemicals

• Mostly chemicals not included in previous versions of ecoinvent

Swiss Centre For Life Cycle Inventories

List of Chemicals

metals

Lithium

organics

- Alcohol ethoxylate
- Alkyl oxylated salts
- Amino-2-ethanol
- Butyl acetate
- Cellulose acetate
- Diacetone alcohol
- Dibutyl phtalate
- Dimethyl acetamide
- Dimethylamine borane
- Ethanol
- Ethyl acetate
- Ethyl cellulose
- 4-Fluoro-1,3-dioxolan-2-one
- Fluoroform
- Hexafluoroethane
- Hexamethyldisilazane
- Hydroxyl monoethanolamine
- Lactic acid

23

- Methanesulfonic acid
- Methoxy propanol
- Methyl-3-methoxypropionate

- N-Methyl Pyrrolidone
- Polyacetal
- Polyglycol mixture
- Polyphenyl oxide
- Polyvinyl pyrrolidone
- Polyvinyl sulfide
- Rosin
- Rosin, modified
- Tetramethyl ammonium hydroxide

inorganics

- Ammonium chloride
- Arsine
- Carbonic acid
- Chloride as ion
- Diborane
- Dinitrogen oxide
- Helium
- Hydrogen bromide
- Iron(III)chloride
- Iron oxide
- LaNiH
- Lead borate
- Lithium carbide

- Lithium carbonate
- Lithium hydroxide
- Lithium manganese oxide
- Nitrogen trifluoride Phosphine
- Phosphoryl chloride
- Potassium carbonate
- Potassium perchlorate
- Silane
- Sodium persulfate
- Sulphuric peroxide
- Trichloroborane
- Trifluoroborane
- Tungsten fluoride
- Water, ultrapure

Others

- Acid cleaner
- Anti tarnish
- Banking agent
- Diazo film
- Foam Free 940 Defoamer
- Glas cleaner
- Solder leveller (HAZL)

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Chemicals for IT

LCI data created in this project: 30 chemicals (+ precursors)

1 chemical

Existing LCI in ecoinvent v1.1: LCI data from solvents project: 5 chemicals

LCI data from photovoltaics project: 3 chemicals

LCI data created by EMPA: 3 chemicals

Approximated with data from v1.1: 17 chemicals

Others: Approximated with with DS "chemicals, organic, at plant, RER" or "chemicals, inorganic, at plant, RER"

Swiss Centre For Life Cycle Inventories

Data Sources (cf. Solvent Project)

 Whenever possible, actual production data was used to determine inventory flows Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

ETH

€Pf€

(FE)

 Necessary estimations were made based on Hischier et al 2004 (Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability)

Basic information was gathered from technical reference books

C ART

econvent

25

Example: Water, ultrapure

tap water → water, decarbonised → water, ultrapure

- ion exchangers (resins), membranes, electrodeionization
- Dataset is calculated with literature data for electrodeionization

Swiss Centre For Life Cycle Inventories

Example: Lithium route

- Lithium carbonate (acid digestion of spondumene): data from literature (Wietelmann 2000, Kim 2003)
- **Lithium chloride** (chlorination of lithium carbonate): energy data from literature (Kim 2003)
- Lithium manganese oxide (sintering of lithium carbonate): approximated with data from iron sintering (ecoinvent v1.1)
- **Lithium hydroxide** (hydration of lithium carbonate): all data estimated

Swiss Centre For Life Cycle Inventories

Example: Ammonium thiocyanate

- $CS_2 + 2NH_3 \rightarrow NH_4SCN$
- All data are estimated
- Raw materials: calculated with an estimated yield of 95%
- Cooling water: estimated with Gendorf 2000
- Energy consumption: estimated with Gendorf 2000
- Transports and infrastructure: ecoinvent standard values
- Emissions to air: estimated as 0.2% of input
- Emissions to water: calculated from mass balance

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

29

Thank you for your information

Swiss Centre For Life Cycle Inventories

- Sutter, J. (2007): Life Cycle Inventories of Petrochemical Solvents. Final report, ESU-services, Uster, CH
- Sutter, J. (2007): Life Cycle Inventories of Highly Pure Chemicals. Final report, ESU-services, Uster, CH
- Hischier, R, Hellweg, S, Capello, C, and Primas, A: 2004. Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability.

 International Journal of LCA. 10. (1). 59-67.

Example: Chlorobenzene

input	Chlorination of benzene	kg per kg monochlorobenzene
raw materials	Benzene (kg)	9.5
	Chlorine (kg)	0.796
	Sodium hydroxide (kg)	0.225
auxilliaries	Process water (kg)	0.9047
	Cooling water (kg)	27.315
energy	Steam (MJ)	1.201
	Electricity (kWh)	0.0478
Output		
emissions to air	Benzene, to air (kg)	0.0266
	Waste heat (MJ)	0.0172
emissions to water	Benzene, to water (kg)	0.105
	Monochlorobenzene, to water (kg)	0.0969
	Sodium chloride, to water (kg)	0.328
	o-Dichlorobenzene, to water (kg)	0.00469
	COD, BOD (kg)	0.638
	TOC, DOC (kg)	0.184

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

31

Approximations

Highly pure chemical

used ecoinvent DS

Hydroxyl monoethanolamine > monoethanolamine

Hydrogen bromide

> hydrogen chloride

Diazo film

> polyethylene terephthalate

Anti tarnish

> chromium/zinc at a ratio of 4:1

· Glas cleaner

> ethanol

Foam Free 940 Defoamer

> polyethylene

Solder leveller (HAZL)

> tin

Swiss Centre For Life Cycle Inventories

