

Implementation of water and carbon flows in the ecoinvent database

Emilia Moreno Ruiz Bo Weidema

The ecoinvent Centre

Structure of the ecoinvent database v3

- The ecoinvent database v3 is organized in independent activities
- Activity: transforming, market, treatment...

Exchanges properties

- mass and elemetary composition
- carbon content
- density
- prices...

Wet, dry, water mass and water content

Wet mass (WM)

Water content (U)

Ralationship among WM, DM, W, U

Wet mass (WM)	Dry mass (DM)	Water mass (W)	Water content (U)
WM	WM-W	W	W/(WM-W)
WM	DM	W M-DM	(WM-DM)/DM
WM	WM/(1+U)	U*WM/(1+U)	U
W+DM	DM	W	W/DM
(W/U)+W	W/U	W	A
(1+U)*DM	DM	DM*U	U

- Carbon content is expressed per DM
- Biogenic carbon comes from plants and animals
- Fossil carbon comes from fossil fuels and calcium carbonate
- Bias: forget your presupposed ideas!

Obtention of carbon contents

eco nvent

Chemical (loose)

- Chemical formula
- Exact formulation: stochiometry, reactions...(ecoinvent v2 reports, Ullmann)

Product composition

Agricole/ Wood

- Composition: FAO, US food database
- ecoinvent v2 reports

Homogeneous assumption for carbon content in:

- -proteins,
- -carbohydrates,
- -fats (ecoinvent v2 reports, Journal of Biochemical and Biophysical Methods)

Complex

- Raw materials in product
- ecoinvent v2 reports

An example: Fatty alcohols

Fatty alcohol from coconut oil

- AE3, AE7
- Fatty alcohol sulfate

Fatty alcohol from palm kernel oil

- AE3, AE7
- Fatty alcohol sulfate

Fatty alcohol from palm oil

- AE11
- Fatty alcohol sulfate

Fatty alcohol petrochemical

- AE3, AE7
- Fatty alcohol sulfate

Fatty alcohol production

Figure from: Zah R., Hischier R. (2007) Life Cycle Inventories of Detergents. ecoinvent report No. 12. Swiss Centre for Life Cycle Inventories, Dübendorf, 2007

C content: assumptions

palm (kernel) oil, coconut oil

Figure from: Zah R., Hischier R. (2007) Life Cycle Inventories of Detergents. ecoinvent report No. 12. Swiss Centre for Life Cycle Inventories, Dübendorf, 2007

Biogenic/fossil origin of C

Fatty acid splitting and hydrogenation 27%

Through Methyl ester production 73%

Exchanges with the environment: new questions

- Use chemical formula
- Use implemented calculations

Otherwise...

Define most common species

- Check compartiment
- EPA, EEA, UGSC

- Biogenic/Fossil
- Sometimes not determined...

How to deal with that?

Biogenic versus Fossil

Biomass Construction Fossil Ores/industrial Total minerals fuels minerals Global Billion t/yr 17.5 16.2 Global DMC 48.5 (=DE)

Limestone (ecoinvent data)

Table from: Steinberger et al., 2010, Ecological Economics 69:1148–1158.

C content in biomass assumed 50%

> DM assumed 90%

High (85% C) and low (60% C) carbon fossil fuels

> Limestone C content considered 11.7%

Biogenic versus Fossil

Limestone (ecoinvent data)

0.3

Table from: Steinberger et al., 2010, Ecological Economics 69:1148–1158.

DM assumed 90%

High (85% C) and low (60% C) carbon fossil fuels

Limestone C content considered 11.7%

water & carbon contents

Exchanges

Product system

To know more about ecoinvent v3...

- ...and about ecoEditor
- ecoEditor presentation: April 6th, ROOM B, 12:30!!

