# Uncertainty reduction in consequential LCA models



Swiss Centre For Life Cycle Inventories











Presentation for the LCA XI conference, Chicago, 2011.10.04-06.



ecoinvent Centre



#### Uncertainty reduction in consequential LCA models

- The sources of uncertainty
- Measurement or estimation in the ecoinvent database
- Uncertainty reduction















## Sources of uncertainty in consequential LCA models

- Data
- Completeness
- Aggregation level
- Geography
- Modelling
- Forecasting















#### Data uncertainty

- econvent
  - Swiss Centre For Life Cycle Inventories

- Basic data uncertainty is reported for each data point
- Defaults applied when measured data are insufficient
- Additional uncertainty related to data quality is estimated with the pedigree matrix approach - including uncertainty from extrapolating or interpolating



## Uncertainty related to completeness

econvent











- Completeness of data behind a specific datapoint -> DQI
- Missing data points → Replace by extrapolated data with a higher uncertainty
- Example: 5 kWh +/- [BU+DQI] purchased from Quebec; missing data from Quebec
  - > use data fro AN instead?
  - extrapolate (interpolate) Quebec data, e.g from CAN, adding higher pedigree scores
- Data and completeness uncertainties are thereby treated in the same way and can be handled via normal simulation with e.g. Latin hypercube sampling.



#### Uncertainty related to the model assumptions



Swiss Centre For Life Cycle Inventories

- Some related to specific data points (production volumes, market trends) → can be treated in line with the afore
- ETH
- (PFL
- **EMPA**
- **O** ART

- Some related to fixed model parameters:
  - market delimitations
  - capital replacement rate
  - technology levels
  - market constraints or elasticities

which can only be assessed by sensitivity analyses with manual modifications for each model run (although parametarisation may be used to facilitate this).



## Uncertainty related to forecasting



- The outlined approach can also be applied to forecasted data (data for years into the future)
  - > increasing the temporal pedigree score for each data point
  - using a wider range of settings for the fixed model parameters in the sensitivity analyses













#### Uncertainty reduction

- econvent
  - Swiss Centre For Life Cycle Inventories
    - ETH
    - (PAL





- Reducing the largest uncertainties first
- Differentiating between reducible and irreducible uncertainty

