

Introduction to the ecoinvent version 3.1 database

ecoinvent User Meeting, Bordeaux, France 30 August 2015

Gregor Wernet

Executive Manager

ecoinvent

What is ecoinvent?

- ecoinvent is a not-for-profit association created by 5 Swiss research institutes
- ecoinvent started out as the Swiss national LCI network
 - Publishes the ecoinvent database
- Publish useful and relevant life cycle inventory data in a centrally organized form

What is ecoinvent?

- Origin: Several LCA projects in the 1990s with a common need for background data
 - Small, loosely connected pools of data
- Decision to create a unified database for use in Switzerland and Europe
 - Swiss supply chains are very international, broadens the applicability
 - Version 1 published in 2003, version 2 in 2008

ecoinvent - Quality Features

Consistent

Fully interlinked database

Reliable

- Independent expert review for all data
- Continuously developed and improved over 15 years

Transparent

- Full access to both unit process data and all calculation results
- Individual documentation of each dataset

Development of version 3

- Develop the database into a global database
 - Change in scope
- Allow more flexibility for the users
 - More access to the underlying modelling
 - Change of underlying assumptions
- Upgrade the code infrastructure
 - New data format, calculation software, data entry tool
- Be prepared for future developments

Some features of version 3

- Definition of products and activities
- Waste flows in version 3
- System models
- Consumption mixes and markets
- Global supply chains
- Differences between versions 2 and 3

- Used by more than 7000 users in more than 40 countries
- Included in or available for the leading LCA and eco-design software tools

Quantis

carbotech

≈m=

Activities and Products in version 3 versus Process in version 2

• While version 2 had **Processes**, the version 3 is organized in

 Activities result in Products, which bear different names than the Activities producing them.

Activities and Products in version 3 versus Process in version 2

lime production, hydraulic / CH

→lime, hydraulic

lime, hydraulic, at plant / CH

→lime, hydraulic, at plant / CH

- Different activities can now produce the same product
 - Different producers of same product can now be identified
- Naming has changed between v2.2 and v3
 - Dissociation between product and activity name
 - Naming rules added for consistency reasons

Ecoinvent v2	Ecoinvent v3			
Process	Activity	Product		
electricity, hydropower, at pumped storage power plant	electricity production, hydro, pumped storage	electricity, high voltage		
electricity, hard coal, at power plant	electricity production, hard coal	electricity, high voltage		
bauxite, at mine	bauxite mine operation	bauxite, without water		
chemical plant, organics	chemical factory construction, organics	chemical factory, organics		

Correspondence file between v2.2 and v3.01 available on the website

Waste flows in ecoinvent version 3

Waste flows in ecoinvent version 3

- The negative sign maintains mass balance.
 - in the waste producing activity
 - in the treatment activity
- The modeling is identical to older versions otherwise

System models in version 3

- A system model is a collection of modeling choices made for the database
 - Solving the allocation problem
 - Recycling and waste streams
 - Handling constraints in suppliers
- In version 3, multiple system models are possible

Different perspectives at the same database

System models in version 3

System models in ecoinvent v3

- Allocation at the point of substitution
- Allocation, Recycled Content cut-off
- Consequential (long-term, small-scale)
- Other models possible
 - Waste/Recycling system models
 - Other allocation choices
 - Integration with specific standards
 - Complete mass- or carbon-based allocation (Mass Flow Analysis)

- Cut-off modeling approach of version 1 and 2
- Implemented as a new system model in version 3
 - "Allocation, cut-off by classification"
- Based on a product-level classification
 - Ordinary, allocatable by-products
 - Recyclable materials
 - Wastes
 - All products are classified consistently throughout the database

- Fundamental concept:
 - No credit for recycling or waste treatment by-products
 - Full burdens for waste treatment, but no burdens for recycling
- Uses a **cut-off** to separate primary and secondary use phases
- Consequence: Burden of primary production is completely with the first use of the product
 - Use of recycled products is encouraged
 - Waste treatment with beneficial by-products is not encouraged

- Ordinary by-products
 - Allocated directly
 - Most products in the database (~90%)
 - Allocated according to values chosen by the data provider to reflect the ISO hierarchy

Wastes (~8%)

Recyclable Materials (~2%)

Point of cut-off

- Consistent application of the cut-off
- Consistent process structure based on product classification
- Flexible application through product choice
- Simple allocation process to follow and reproduce
- Clear datasets to modify or adapt

Allocation at the point of substitution

- Physical allocation where possible, otherwise allocation at the point of substitution
- The point of substitution is the point where a recycling/treatment process results in a marketable product (i.e. a good produced purely for economic gain)
 - At this point economic allocation is feasible

Allocation at the point of substitution

Graph: G. Doka

- Difference in allocation of wastes treatment products and recyclable materials
 - No other differences in the models
- Differences only for these products
 - 8% of products in the database are wastes, few have significant byproducts in treatment
 - 2% of products in the database are recyclable materials

- Slightly lower impacts for most products in the database in APOS
- Non-zero impacts for products no longer cut off
- Impacts are shifted between products, but of course not created or removed
- Two available system models allow a sensitivity analysis in cases where recycling or cut materials are important

Attributional vs Consequential

- Consequential modelling assesses changes
- Use of Substitution has major effects on results of productions with significant by-products
- Consequential uses marginal suppliers
 - may be an improvement or more impactful than average suppliers
- Consumption of by-products creates demand for primary production in consequential

Attributional vs Consequential

Consequential modelling assesses changes

Market datasets

- Separation of product and activity names
 - More that one activity can produce the same product
- Market datasets are available for all products
- Markets describe the consumption mix for a product and region

Market datasets

Market datasets

- Market datasets provide consistent consumption mixes of a product for a region
- Additional information is included
 - Transport, losses during transport
 - •
- Linking rules can be modified to create multiple system models
- Consistent availability of consumption mixes
 - Always a choice between the individual producers or the market average

The choice remains

 As user, you can always choose between the supplying activities and the consumption mix

Search: barley grain						
# \$		Name	Reference Product	Loc. \$	Time Period	S
6		barley production	barley grain [kg]	DE	01.01.2000 - 31.12.2004	
7		barley production	barley grain [kg]	ES	01.01.2000 - 31.12.2004	
8		barley production	barley grain [kg]	FR	01.01.2000 - 31.12.2004	
9		barley production	barley grain [kg]	GLO	01.01.2000 - 31.12.2004	
16		market for barley grain	barley grain [kg]	GLO	01.01.2011 - 31.12.2011	

https://ecoquery.ecoinvent.org

electricity, high voltage market for electricity, high voltage / FR

transport, passenger train / FR

Use of direct links to overcome markets

electricity electricity, production, high voltage nuclear, pressure water reactor / FR electricity electricity, high voltage production, hydro, run-ofriver / FR electricity, electricity high voltage production, natural gas / FR

electricity, high voltage

market for electricity, high voltage / FR

electricity production, nuclear, aluminium industry / UN-Europe

Use of direct links to overcome markets

Global supply chains

- In v2.2, local datasets served as placeholders for global activities
- All processes now have a global counterpart
 - Often extrapolated from regional data
 - Uncertainties increased
 - Distributes supply chains and impacts for regionalized LCIA
 - Serves as a foundation for regional data projects
- Global update of freight transport data
 - Based on better data, sector-specific values

Thank you for your attention!

Gregor Wernet

Executive Manager

wernet@ecoinvent.org

www.ecoinvent.org

