

Uncertainty correlation and Monte Carlo sampling in LCA

LCAXV, Vancouver, Canada 07 October 2015

Guillaume Bourgault, Ph.D

Project Manager

ecoinvent

Outline

- What is Monte Carlo and why we use it?
- What correlation are we tackling today?
- How beta and Dirichlet distributions can help?
- Ignoring correlation overestimates uncertainty

What is Monte Carlo?

What is Monte Carlo?

Why Monte Carlo?

- What is the uncertainty of the model output?
 - "All models are wrong, but some are useful". How useful is your model?
 - Decision makers appreciate the information
- What parameter of the model drives the output uncertainty?
 - Learn something about the model
 - Recommendations on model use
 - Guide data collection
 - Restructure the model: more parameters necessary?

Why Monte Carlo?

- Simpler models: analytical tools
 - Cumbersome to impossible for large models
 - Taylor series expansion: ill-adapted to large uncertainties in LCIA
- Advantage of Monte Carlo
 - Variables are sampled on their entire domain
 - All variables change at once: captures interactions between parameters
- Drawback of Monte Carlo
 - Computationally expensive (time and memory)
 - Requires coding skills

Correlation in LCI

Correlation in LCI

Correlation in LCIA

Fate factor

FF_{ij} = mass transported from source cell (i) to all other cells (j).

$$1 \ge FF_{ij} \ \forall j \ge 0$$
$$1 \ge \sum_{j=1}^{n} FF_{ij} \ge 0$$

Lognormal

- 3 degrees of freedom: minimum (often zero), average, variance
- Only has a lower bound
- skewed to higher values
- VERY skewed for high variance

Beta

- Upper and lower bound
- 4 degrees of freedom: min, max, α, β
- Choose min, max, average, percentile $97.5 \rightarrow \alpha$, β
- Skewed to the right, left, or symmetrical

$$\alpha + \beta \downarrow$$
, $\sigma \uparrow$

- Dirichlet is a multi-variate beta
- Inputs of Dirichlet:
 - Vector 1 x N. Example: [0.13, 0.68, 0.19]
 - Scaling value. Example: 10 and 100
 - M iteration. Example: 1000
- Output of Dirichlet:
 - Parameters for N beta distributions
 - N samples of M iterations

Each iteration sums to 1

Shuffled sample

```
Out[72]:
array([[ 0.11361161,
                     0.61693219,
                                  0.28884694],
                                  0.40323989],
       [ 0.11066555, 0.87386014,
       [ 0.08209619,
                     0.62743918,
                                  0.10454758],
       [ 0.01507658,
                     0.57664339,
                                  0.33551239],
       [ 0.07420796, 0.61165905,
                                  0.23939245],
        0.13773725, 0.74982074,
                                  0.10817512]
```


- Electricity production, ecoinvent v3.1, IPCC 2007 GWP 100 scores, Austria
 - Natural gas: 0.84362 kg CO₂-eq/kWh
 - Hard coal: 1.0022 kg CO₂-eq/kWh
 - Hydro, run-of-river: 0.0044188 kg CO₂-eq/kWh

Take home message

- Ignoring correlation leads to uncertainty overestimation
- Larger the uncertainty of the parameters → larger overestimation
- No rule of thumb to predict if the difference is noticeable
- Safer to test if the effect is significant in the setting at hand
- Ask your software provider the detail of the algorithm
- Ask a statistician friend!

Thank you for your attention! Questions?

Guillaume Bourgault

Project Manager

bourgault@ecoinvent.org

www.ecoinvent.org

Why not divide by sum?

Why not divide by sum?

